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Abstract

A communication scheme for random multipath channels is investigated. During
predetermined intervals the transmitter sends a sounding signal that the receiver uses
to predict the behavior of the channel during the intermediate time when communication
is performed. It is assumed that the channel varies slowly, and that the additive noise
in the receiver is low.

The possibility of representing a multipath channel as a time -variant filter is inves-
tigated. A sampling theorem for linear bandpass filters is derived, and the results that
can be expected when it is used to represent a single fluctuating path with Doppler shift
are discussed.

The prediction operation is essentially linear extrapolation: a formula for the mean-
square error is derived and compared with optimum linear prediction in a few cases.
Calculations on actual data from ionospheric scattering communication show that the
method Is feasible and give good correspondence with the theoretical results.

Under the assumption that the receiver makes decisions on each received waveform
separately, and that there is no overlap between successive waveforms, the optimum
receiver is derived. It consists mainly of a set of matched filters, one for each of the
possible waveforms. The predicted value of the channel parameters is used in weighting
the output from the matched filters to obtain likelihood ratios.

The eventual practical value of such a communication system is still an open ques-
tion, but this formulation provides means for dealing with random multipath channels
in a way suitable for mathematical analysis.
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I. INTRODUCTION

1. 1 HISTORY OF THE PROBLEM

a. The Probability Computing Receiver

The problem of detecting known signals disturbed by additive noise can be stated

as follows (see Fig. 1). The transmitter has M possible waveforms, each of duration

T. It sends one of them, say 6k(t) with probability P(k). The signal is disturbed by

additive white Gaussian noise ?(t) and the received signal is 4k(t) = 4k(t) + 11(t). We

assume that the receiver knows the form of the M possible waveforms and we want

it to detdrmine which one was sent. All of the information that the receiver needs for

that purpose is contained in the set of a posteriori probabilities P(4k(t)A(t)),

k = 1, ... , M. It is clear that a receiver that computes this for all k and chooses the

index which gives the largest probability minimizes the probability of making a mistake.

Using Bayes' equality we can write

P(k) p(tl/ k9t))
P(4k0 )/ t ( t ) ) =- M(1

IP(V) plltl/Vltl)

V=

where p denotes probability density. Since the denominator of (1) is a constant

independent of the index k and the P(k) was assumed to be known, the receiver
need only compute the conditional probability density p(,(t)/ek(t)) for each k. Since

the noise is Gaussian;p(C(t)/4k(t)) is going to be a Gaussian density and it is pos-

sible to show that

P(I) CIt) 0

P(2) C 2(t) 0

0)i Z C kt)0+17It)

P(;) C M(t)
P(M) Ml)  " k~t =0O>t>T , k-1,2 ... M

PAM C (t0 Qt O. ~uI2*
M

M
I P(v),l
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Fig. 1. Signals disturbed by white Gaussian noise.
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Fig. 2. Optimum receiver for additive white Gaussi,,n noise.
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where

Uk 
=  gklt) rt) dt (3)

00

and No is the noise power per unit bandwidth. We see that the receiver has to evaluate
the correlation integral k between the received waveform and each possible transmitted

waveform. This can be done, for instance, by matched filters. The receiver then takes

into account the possible difference in signal energy and signal probabilities, P(k), and

decides which waveform was actually sent. (See Fig. 2.)

The receiver of Fig. 2 performs these desired operations; in this report we use

the term "optimum receiver" for a device that computes the probability density

p( t) k~))or a monotonically related function in order to make its decision. We have

stated the problem as a one -shot problem but for white Gausian noise it is clear that
the performance of the receiver is still optimum whenever the transmitted waveforms
are statistically independent of each other. A more detailed presentation of the optimum
receiver for additive noise has been given by Fano.

Let us now consider a more general problem in which the transmitted signal is per-
turbed by a random channel in addition to the white noise. (See Fig. 3.) By the term
random channel, we mean a linear time varying filter whose variation is guided, in gen-
eral, by a multidimensional random process. The problem of determining the function
of the probability computing receiver in this case has been studied by several authors.
In the next paragraph we review some of the results obtained.

receverforaddtiv nose as eengivn b Fao.2



b. Other Research

We shall discuss some of the results for the optimum receiver for the general case
16 21 1illustrated by Fig. 3, obtained by Price, Turin, and Kailath. Their approaches

differ mainly in the class of random channels considered. Price and Turin deal with

ionospheric -scattering communication and work with channels that have multipath

0

t2(t) C k(t) RANDOM ] v k(t) (=vk(t) + q(t)

k n (t)

NOISE
CMt) o

Fig. 3. Signals disturbed by a random channel plus noise.

structure. Kailath considers a very general channel for which the statistics need not

even be stationary. All three authors assume that the receiver has complete knowledge

about the statistics of the channel and the additive noise, which are assumed to be sta-
tistically independent of each other. The decision is made on each waveform separately.
This means that the receiver is, strictly speaking, optimum only for the Wone-shot case,"

since it does not exploit the fact that successive output waveforms may be statistically

dependent. Finally, it is assumed that both the transmitter and the receiver have the
same time standard.

Price considers a random channel that consists of a number of paths with known

delay. Each path has a stationary narrow-band Gaussian process associated with it.
The different paths are assumed to be statistically independent. If we send an unmod-

ulated carrier through this channel, we receive Z(t) = yc(t) cos wot -ys(t) sin wot, where

Yc(t) and Ys(t) are lowpass, independent, Gaussian processes with zero mean and identi-

cal autocorrelation. The first-order statistics of the envelope of Z(t) are then Rayleigh
distributed and the phase distribution is flat. See, for instance, Davenport and Root 7

for a presentation of the narrow-band Gaussian process. For this type of channel, Price

obtains the optimum receiver in open form. The operations that the receiver should

perform are given in the form of integral equations. For the special case of a single
path and input signals that are constant or vary exponentially with time, they derive in

detail the structure of the probability computing elements. The case of very low

signal-to-noise ratio is also considered in some detail.
Turin works with a similar multipath model. The channel is represented by a num-

ber of independent paths each of which is characterised by a path-strength a, a phase

3



shift ei, and a delay T. The channel is so slowly varying that these quantities can be

considered as constants during the transmission time T. The strength and phase shift

of the paths are assumed to be represented by a constant vector plus a vector with Ray-

leigh distribution for amplitude and completely random phase. Since the Rayleigh dis-
tribution is characterized by a single parameter, say cri , each path is determined by
four quantities: the amplitude ai and the phase 61 of the constant vector and ri and ri .

For the case ai = 0, Turin's channel is the same as Price's for slowly varying paths.

Turin considered the following cases: the receiver knows all four channel parameters;

the receiver does not know 6 (in which case it assumes completely random phase); T

and 6 are not known and the receiver assumes 6 to be completely random and r to have

a flat distribution within two time limits. It is interesting to notice that the optimum
receiver under most of the conditions above computes the correlation integral between

the received signal and the possible transmitted signals delayed according to the path

delay T . The terms corresponding to different paths are then combined, by using the

known statistical parameters of the paths, to obtain the probabilities p(,(t)/4k(t)).

Kailath has a much more general random channel than Price and Turin. His only
restriction is that the channel be Gaussian, i. e., that the output Vk(t) sampled at arbi-

trary instants of time gives a multidimensional Gaussian distribution for all values of
k. When vk(t) has zero mean for all t, Kailath derives an optimum receiver that looks

like Fig. 4. He shows, also, that the estimating filters Hk can be interpreted as a mean-
square-error estimator of vk(t) when k was actually sent. The same result was obtained

earlier by Price for the random filter consisting of a single path. We see that when the
receiver does not know the channel exactly, it estimates, on the basis of its statistical

knowledge, what the received signal should look like before the noise was added if a par-

ticular signal was sent. It then crosscorrelates this estimate with the actually received
signal to obtain a quantity that is monotonically related to the a posteriori probabilities

ESTIMATING FILTERS

Fig. 4. Optimum rceiver for sero mean Gaussian random channel plus noise.
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Fig. 5. Optimum receiver for Gaussian random channel plus noise (General Case).

It is important to notice that this interpretation of the optimum receiver is valid only
ifvkt has zero mean. When this is not the case, Kailath gives the receiver structure
of Fig. 5 in which -k(t) is the mean of vk(t) (already known by the receiver under the

assumption that a particular k was used). The gain factor 2 on the amplifier shows
that the receiver puts greater weight on the part of the signal that It knows exactly than

on the part It has to estimate.
Kailath considers a very general case and he obtains very general results. His esti-

mating filters are given in the form of limits of very large inverted matrices. It is hard

to say much more than that It is possible to instrument them as linear time -variant

filters.

c. Discussion

Price and Turin consider specific multipath models that are more or less applicable

to ionospheric -scattering communication, while Kailath considers a more general model.
The thing that they have in common is the assumption that the receiver has complete

fod
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statistical knowledge of the channel. To obtain this statistical knowledge, we have

to measure the parameters of the channel, but since additive noise is present,

we cannot do this exactly. To build an estimator that is optimum in some sense,

we need to know in advance some of the statistical parameters that we want to

measure. To some extent this is a closed circle, but we can, at least in prin-

ciple, start guessing the statistical parameters that we need and then construct an

optimum estimator on the basis of this guess. This, we hope, gives us a better

estimate of the statistics and we can use this as a priori information to construct

a better estimator, and so on.

Perhaps a more serious problem to consider is whether or not the channel is sta-

tionary. For a statistical description to be at all useful, the channel has to be at least

quasi-stationary; that is, we can consider it stationary during the time in which we are

using it for communication. If the properties of the channel change and we have

to make repetitive measurements of the statistical parameters and then change our

optimum receiver according to these measurements, we have a painfully elaborate

scheme.
As we have pointed out, the theoretical work on optimum receivers has been done

under the assumption that the receiver makes its decision on each waveform separately.

If the channel is varying very fast, so that the disturbances from one transmitted signal

to the next are essentially independent, this is clearly the best that we can do. If, on

the other hand, the channel changes only slowly during the transmission of a signal, we

are not using all of the available information about the channel. Since the receiver tries

to circumvent the fact that it does not know exactly what the channel was by making an

estimate on the basis of the received waveform, it can clearly do better in the case of

slow variations by extending this estimate over consecutive signals.

The RAKE receiver described by Price and Green 17 is an attempt to use the ideas

of optimum receivers for combatting random multipath in a practical case. Two orthog-

onal waveforms are used, and the receiver makes an estimate of the path structure of

the channel by crosscorrelating the sum of the two possible signals with the received

signal. It is possible to do this, since the signals have nonoverlapping spectra. The

time constant of the correlator is greater than the duration of the signal, and the

receiver is thus operating over more than one signal at a time. The estimate of the

path structure is then used to correct the received signal before the decision is made.

If the channel is nonstationary and the receiver is faced with the problem of obtaining

statistical knowledge of the channel, it is perhaps just as easy for the receiver to try

to measure the channel itself. For such measurements to be useful, the channel must

vary slowly, so that it does not change much between transmitted signals. Price 15 and

Turin2 0 have discussed the possibility of estimating the instantaneous state of the chan-

nel by using a sounding waveform known to the receiver. In this report we are going

to outline a communication procedure that is based on this idea for a slowly varying

multipath medium.
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1. 2 THE IONOSPHERE T
The propagation of radio waves via ionized layers in the upper atmosphere has been

considered for more than half a century and an established theory exists. For a certain

incident angle there is a maximum usable frequency (MUF) below which the wave is

returned to earth by a process of gradual refraction. Since there exist several layers

at different altitudes and, in addition, the wave can make several hops, it is clear that
we are dealing with a multipath medium. Other things that contribute to this structure

are the splitting of the wave into an ordinary wave and an extraordinary wave because
of the earth's magnetic field, and the possibility of a ground wave. The mathematical

theory of radio waves in the ionosphere can be found in Budden.6

A different kind of propagation mode, called scattering, has received considerable

attention during the last decade. If there are irregularities in the ionosphere, they act

as oscillating electric dipoles when exposed to an electromagnetic wave, and in this way
energy can return to the earth. The possibility of using scattering for long distance

1
communication was pointed out in a paper by Bailey and others. The scattered field
is comparatively weak, but it provides means for communication beyond the horizon

with frequencies higher than the MUF.

In a paper written in 1948, Ratcliffe 18 pointed out that if we assume that the down-

coming wave is scattered by many "scattering centra," each scattering the same amount

of power and completely randomly distributed in space, we are going to receive a

narrow-band Gaussian process if we send up an unmodulated carrier. Moreover, if the

scattering centra move in the same fashion as molecules in a gas, that is, if the line-
of-sight velocity has a Gaussian distribution, the power spectral density of the down-

coming wave is Gaussian and of the form

S-(f-f )2/2 2W(f)u- r2V we , (5)

where

2f V
0 0
c

with V0 the rms velocity of the scattering centra, and f the frequency of the incident

wave. We can state these properties in another way. The downcoming wave can be

expressed in the form

Z(t) Z V(t) cos (2wfot+*(t)). (6)

The envelope V(t) has a Rayleigh distribution of the form

V
2

__.A
V t  

2p(Vt -t-22 V t a 0 (7)
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If we look at the quadrature components

ys(t) = V(t) sin (t) and yc(t) = V(t) cos +(t)

we see that they are independent Gaussian processes with identical autocorrelation of

Gaussian form.
We notice that these statistics correspond to the assumptions in Price's work about

the optimum receiver.
If, in this idealized case, we have a specular component of amplitude A in the down-

coming wave, the distribution for the envelope takes the form

V 2 +A 2
t

Vt 202  /AV t
p(Vt) =-, e Io k- Vt >(0 (8)

See Davenport and Root 7 for a derivation. This kind of distribution was first considered

by Rice 1 9 in his classical paper of 1945, and we use the name *Rician distribution" for
it. This was the type of statistics which Turin used in his work.

Ratcliffe's model of the scattering process is, of course, too simple to represent
the physical phenomena that occur. More complicated theories have been presented

by Booker and Gordon, 3 Villars and Weisskopf, 2 3 and others, but they all seem to lead
to the Rayleigh distribution for the envelope when there is no specular component.

Measurements of the statistics of scattered radio waves have been presented by many

authors. A brilliant and extensive study of ionospheric transmission at medium fre -
quency (543 kcps) has been made by Brennan and Phillips.4 They computed the distribu-
tion of the envelope of the received wave and made a test to determine whether or not
it had a Rician or Rayleigh distribution. The result was perhaps somewhat disappointing;

in more than half of the 200, or more, cases analyzed, they determined "no fit." The
computed correlation functions for the envelope took many widely different forms, and
it was not possible to assign any general shape to them.

The ionospheric scattering has multipath structure if we have different scattering

regions with different transmission times. Most of the measurements reported have

been made with a continuous wave, and very little is known about the statistics of the
multipath structure. It should be of interest to know, among other things, more about
how many paths are present, if the paths are statistically independent, and the nature

of variation in the delay between paths. Another effect that needs to be studied is the

Doppler effect that a steadily moving scattering region should produce. Some work in
this area is presented in a thesis by Pratt, 1 6 and other work is being done at Lincoln

Laboratory, M. I. T.

1. 3 THE COMMUNICATION SYSTEM TO BE CONSIDERED

On the basis of the theoretical investigations that have been reviewed we are going

to outline a possible scheme for communication over random multipath channels. The

8
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Fig. 6. Transmitted signals
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Fig. 7. Receiver structure.

receiver is probably not optimum in any sense, but it should work well, at least, under
certain conditions.

We assume that the transmitter sends information during the time intervals of length

T1. Between these intervals, it sends a predetermined signal of length T s from which

the receiver tries to obtain knowledge about the multipath medium. In the particular

case considered here, this sounding signal consists of a number of short pulses; with

these as a basis the receiver tries to predict the behavior of certain channel parameters

during the next Ti seconds. The receiver uses this predicted knowledge about the chan-

nel when it makes its decision of what was sent. See Figs. 6 and 7.

The prediction operation that is to be used Is simply linear extrapolation. See Fig. 6.

During the T5 seconds the receiver knows that channel parameter exactly apart from

additive noise. It determines a straight line that fits the curve n a least -square sense,
and ues this lie as predicted value of the parameter for the next T1 seconds, during

9
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Fig. 8. Prediction operation.

which information is being sent. This procedure contains a smoothing operation that

is necessary because of the additive noise, but does not use any statistical knowledge

about the process and it should work just as well (or badly) in a nonstationary case as

in a stationary one.
This procedure is clearly based on some assumptions: that it is possible to char-

acterize the multipath medium with a number of slowly varying parameters; that the

signal-to-noise ratio is high enough, and so on. Measurements made by Group 34 at

Lincoln Laboratory seem to indicate that it should be possible to use the outlined pro-

cedure for ionospheric scattering HF communication, and we are going to investigate
it for that kind of channel.

We first consider the problem of representing the ionospheric scattering with a model

channel whose parameters are simple to measure and predict, and which is still capable

of representing the channel closely enough for practical purposes. Section U deals with

the prediction operation and some calculations are carried out with actual ionospheric

data. In Section IV the derivation of the receiver structure is given.

10
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II. A MODEL OF SCATTERING MULTIPATH

2.1 INTRODUCTION

To work our problem we need a model of the communication channel. First, we con-

sider the representation of ionospheric scattering by a time-variant linear network. The

assumption that the receiver makes repetitive measurements of the channel emphasizes

the need for a simple model with a limited number of parameters to be determined. The

linear-network approach has the advantage of being quite general, but it seems to lead

to unnecessary complexity when it is used to represent multipath or frequency shift. The

model that we chose to use is discussed in the last part of this Section and it is based

mainly on physical facts about scattering communication.

2.2 LINEAR NETWORK REPRESENTATION

a. Sampling Theorem and Delay-Line Model

If we consider a communication link having wave propagation in a time -variant but

linear medium, we can characterize the channel as a filter with an impulse response

changing with time. See Fig. 9. The response function h(y, t) contains all information

about the channel that we can possibly need, but it can be extremely complicated. For

electromagnetic wave propagation, for instance, with signals of different frequencies

traveling according to different physical mechanisms, it would be hard to visualize any

over-all impulse response. In a practical case, in general, we use bandlimited signals

in a narrow region, and we are not interested in such a complete description a knowl-

edge of h(y, t) should provide. If our transmitted signal u(t) is bandlimited in the band

f- 1 f f + ! it can be shown that (see Appendix A) that we can write the received

signal as

h' (yhyt)

co O
vMt =f h(y,t)u (t-y)dy vWt f h'(y, t) u (t -y)ely

- OD -0o

u(r) BANDLIMITTED: fc -w< Ifll f 2

Fig. 9. Time-varlant linear filter.
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where the circumflex denotes Hilbert transforms, and hl(y. t) is related to h(y, t) by the

formula A-6 of Appendix A. If our signal u(t) is narrow-band (i. e., fc * w), we can get

an easy expression for the Hilbert transform.
Write u(t) in terms of its quadrature components

u(t) = uc(t) cos 2wfct - u(t) sin 2wfct. (10)

Taking the Hilbert transform (for instance, by passing it through the filter in Fig. A-2),

we get

0(t) = uc(t) sin 2wfct + us(t) cos 2-fct. (I 1).

Since uc(t) and us(t) are slowly varying lowpass functions, we have

0(t) arU(t -I)

and analogously h'(y, t) 23 h'(y - t

The summations in Eq. 9 go from -co to +0o, but in most practical cases h' (i-, t)

goes to zero rapidly enough for In I large, so we can introduce a suitable delay T and

represent formula (9) by the delay line in Fig. 10.

It should be pointed out that the particular form of the response function for the time-

variant network that we have chosen is not the only possible one. Our treatment of the

01 (t) a2 (t) a Wt on (t)

C

UM fcv(t- T)

u(t) DELAY LINE

b,() 2(t) b V~ M bn (t)

oV~t M " w ( h t) b (t )  h ' v---.):W = W- 4fc  ,t

Fig. 10. I)elay-line model for narrow-band functions.
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subject is very similar to that of Kailath to which we refer for other possible repre-

sentations.

b. Example I

As an example we derive the delay-line model for the simple channel in Fig. 11,

composed of a time delay 6 and a frequency shift Af. As is shown in Appendix A, we

obtain

h'(y, t) = A2w sinc [w(y-6)] cos [21r(fc(y-6)+Aft)+0] (12)

A
h'(y,t) = A2w sinc [w(y-6)] sin [2i(fc(y-6)+Aft)+,O] (13)

If we choose fc and w so that fc = NW, where N is an integer, the tap gains in Fig. 10

become

2w w ) cos (2w&ft+8) (14)

b(t) = = A sinc v- sin (2wAft+O). (15)

w w

Here, 0 = + Zwf c 6. The tap gain functions are simple sinusoids with frequency given

by the frequency shift. The magnitude of a v or b. as a function of the tap number v is
1

given in Fig. 12 for 6 = 2=I

u~t M TIME DELAY 8 A u (t-8) PHASE SHIFT v(t)

ATTENUATION A A~f + (1

rei ( 2wZft + ff>o

H(if,t) =  A e-f2wf 8oei(2wft

Fig. 11. Filter with delay and frequency shift.

c. The ionosphere as a tapped delay line

Measurements of ionospheric radio-wave propagation indicate that the ionosphere

can be considered a linear medium, at least in the sense that nonlinear effects are of

second order. For communication purposes, the signal bandwidth is always much

smaller than the carrier frequency. It should therefore be possible to represent the

13
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Fig. 12. Amplitude of the tap gain functions for the filter illustrated in Fig. 11.

ionosphere over a certain frequency band with the tapped delay line shown in Fig. 10.
If we decide to use the delay-line model, the question arises whether or not we can

easily measure the tap gain functions. To determine the response function of a time-

variant filter, we need to know the output signal corresponding to a number of succeeding

input signals. This is difficult to perform for an ionospheric propagation link, since it

is hard to establish the same time scale at both transmitter and receiver. The sampling

theorem in formula (9) is in terms of samples of a high-frequency waveform. In prac-

tice it is inconvenient to instrument this directly, and some kind of demodulator is gen-

erally used in the measurement system.

Taking these matters into consideration, we investigate a particular way of meas-

uring the characteristics of the ionosphere. We are interested in the frequency band

fc- -_. 4 f 2 f + -" As a sounding signal we use a lowpass function g(t) with a band-

width wg a 1 and multiply it by a carrier frequency to get a narrow -band function. At
the receiver we use a quadrature demodulator to provide information about the phase,

as well as the amplitude of the received signal. We assume that the receiver knows the
time at the transmitter apart from a constant value 6. and that the local oscillator in

the demodulator is timed to the frequency fc + AfE. See Fig. 13.

To get a feeling for what we can expect if we perform such measurements, let us

consider replacing the ionosphere by the filtern in Fig. 12, except that A and * are

slowly varying with time (slowly compared with -u.) to get a fading effect. We can con-

sider this as a model of a slowly varying path with Doppler shift. We send a sequence

of g(t):s, spaced T seconds apart, and record the corresponding output from the demod-

ulator. Since the parameters A and + are slowly varying, we can use the results from

Example l,and the tap gains that we determine are of the form

ajt) z av A(t) cos [2wAft+e(t)]

(16)
b,(t) w bV A(t) sin [2wAft+O(t)].
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With the simple channel structure that we have assumed, the outputs from the demod-

ulator ua and uc are copies of g(t), spaced T seconds apart, but with varying amplitude.

(See Fig. 13.) If we determine the amplitude for each transmission, the outputs can

SSIN 2,r(f c + Afe) t + 4))

IONOSPHERE

COS tuc(t)

MODULATOR COS 2w(fC + Afe)t + 10)

QUADRATURE DEMODULATOR

f g(t) T T

fV (t)

T T t

WAVEFORMS FOR ASINGLE PAT6i WITH DOPPLER SHIFT

Fig. 13. Measurements of the ionosphere.
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be considered as samples, t seconds apart, of the time functions

Vc(t) = A(t-rE) cos [(2w(Af+Af f)(t--vf)+O(t-TE)] (17)

Vs(t }= A(t-TC) sin [(2w(Af+AfE )(t--rC)+e(t--Tr. (18)

It is thus possible to determine the tap gain functions apart from a time delay TE and

a frequency AfC. If we use the same demodulator both for measurements and as a part

of a receiver for communication, it is meaningless to distinguish between the uncertain-

ties caused by the ionosphere or by the receiver and we can extend the model to include

the particular receiver that we are using.

For a time-variant channel of more complex structure than we have considered, we

can still obtain the tap gains by comparing the received signal with the transmitted. This

is under the assumption that the time variation in the filter is slow enough so that the

tap gains are determined by samples T seconds apart.

Example 1 tells us that, depending on Doppler effect in the channel or frequency devi-

ations in the local oscillator of the receiver, the tap gain functions are of the form

a.(t) = aV(t) cos (A Vt+ V(t)) (19)

for a slowly varying path.

d. Modulated Random Processes

If we apply a statistical description to our time-variant channel, the tap gain functions

of the delay-line model are sample functions of random processes. To gain some insight

into what kind of processes we can expect, let us substitute the single path filter of

Fig. II for the ionosphere and assume that we know the statistical properties of A(t)

and (t) (with Af assumed constant).

We define two new functions

xs(t) A(t) sin (t) (20)

Xc (t) = A(t) cos +(t). (21)

We can determine the tap gain functions apart from an uncertainty of time origin,

and we have

a,(t) = aVA(t) cos (Awt++(t)+qF) (22)

b(t) = aVA(t) sin (Awt++(t)44), (23)

Here, Aw is considered as a constant and is caused by the Doppler shift of the path and

the frequency error of the local oscillator in the receiver. The constant phase angle

4 is due to the fact that we do not know the time origin and carrier phase.

We can write the tap gain functions in terms of xa(t) and zc(t).

16



aV(t) = a.[xc(t) coo (t+44)-xs(t) sin (Awt+)] (24)

b (t) = av[xc(t) sin (At+)+xB(t) COs (Awt+tp)]. (25)

If we make the assumption that xs(t) and xc(t) are (strict sense) stationary processes,
we can determine what conditions they must satisfy in order for av(t) and b,(t) to be sta-

tionary. Since for a stationary process the mean is independent of time, we see imme-
diately that

E[xc(t)] = E[xs(t) ] = 0 (26)

is a necessary condition. As we show in Appendix B, we have further constraints. If,

for instarice, we assume x. and xc to be independent random variables, they must be

Gaussian and have the same variance for a,(t) and bv(t) to be (strict sense) stationary.
We have also conditions on the correlation functions for xV(t) and xc(t):

"c('r) = Rs('r) (27)

Rsc (T) = -Rcs(-r) (28)

is a necessary condition for av(t) and by(t) to be stationary.

If, in addition, xs(t) and xc(t) are sample functions from independent random proc-

esses, we obtain (see Appendix B) for the autocorrelation and crosscorrelation of a(t)

and b(t)

Ra(r) = Rb(T) = Rc(T) cos AWT (29)

Rba(T) = -Rab(T) = Rc(T) sin Aw r (30)

This means that as long as Aw * 0, a(t) and b(t) cannot be independent processes. The

conclusions that we can draw are that even if the ionosphere is stationary, our tap gain

functions are only stationary under rather restricted conditions. If instead of charac-

terizing each pair of taps on the delay line with the functions av(t) and b,(t) we consider

the amplitude

V(t)f av2(t)+b 2(t) = a A(t) (31)

and phase

b1,(t) (32)

0(t) arctg -. +(t) + Awt + 
3,

a,(t)

we are in a somewhat better position because V(t) is stationary even if E[A(t)] 0 0.
0(t) is still not stationary for it contains a term increasing linearly with time, but

it should at least be easier to compensate for that effect than if we deal with aV(t) and

b (t).
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Nevertheless, the delay-line model is still rather complicated. If we want to work

in real time, we have to introduce a delay that can be inconvenient. The number of taps

that are necessary for a particular purpose is hard to estimate; for the simple case of
a single path with delay the magnitude of the taps decreases as l/y, where v is the num-

ber of taps. Another thing is, that even if our channel consists of a number of statisti-

cally independent paths with different delays, the tap functions need not be uncorrelated.
We saw in the case of a single path that all the tap functions had identical form and hence

had correlation equal to one.

2.3 A PHYSICAL MODEL OF THE IONOSPHERE

Thus far, we have seen that it should be possible to represent ionospheric trans-

mission by a tapped delay-line model. The complexity of such a representation, how-
ever, turned out to be rather high, even for simple multipath structures.

To avoid some of the difficulties, we shall use instead a model that takes into account

what is known about the multipath structure of the ionosphere. We are, of course, losing
something in generality but we gain in simplicity.

The model that we utilize is the same as the one used by Turin, 2 1 except that we

allow a frequency shift caused by Doppler shift or offset of the local oscillator in the

receiver.

TRANSMITTED
WAVEFORM

OS Wt t

RECEIVED Co)s (W ct+ g )

r !COS (Wt + 2

g. AW.t+ P.

Fig. 14. Model of ionospheric scattering propagation. /
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I
We assume that it is possible, for our purposes, to represent the ionosphere by a

number of paths, each of which has associated with it an amplitude Ai , a phase eO, and

a delay T i . These qualities change slowly with time so that they can be considered as

constants during the transmission of a signal. 01 is of the form wit + 40i(t), but for the

time being we make no assumptions of stationariness of Ai(t), Ti(t) or +i(t). See Fig. 14.

I I I I I

0 10 20 30 40 SEC

Fig. 15. Impulse responses of ionospheric scattering taken 10 seconds apart.

The validity of this model can, of course, only be proved by comparing it with phys-

ical data. The knowledge of HF ionospheric transmission that has been published is not

too extensive, and the facts that support the model are, for the most part, of speculative

character. In Fig. 15 there are some pictures of the received signal over a 1685-km
ionospheric scattering link at 12. 35 mc when a short pulse (35 Rsec) was transmitted.

We see that the paths are well defined and their relative delay seems to stay constant,

at least for times of the order of minutes. The response functions are taken from a

note by Balser, Smith, and Warren. 2
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II. METHODS OF PREDICTION

3. 1 INTRODUCTION

According to our communication scheme the receiver measures the parameters of
the channel model utilizing a sounding signal and then predicts the behavior of the chan-

nel for the time interval used for message transmission. The fluctuations in the iono-

sphere are random and, accordingly, the parameters in the model are determined by
random processes. Thus, what we need is a prediction in a statistical sense, and we

have the restriction that only a limited part of the past of the process is available. As

we have pointed out, there is no evidence that the statistics of the ionosphere should be

particularly simple, or even stationary. Our prediction operation should therefore not
be sensitive to what kind of process it is applied to, and it is also desirable for it to be

easily instrumented.

In the first part of this section some simple operations suitable for pure prediction
are discussed and compared with optimum linear prediction. In the last part the prob-
lem of prediction in the presence of noise is considered and some calculations are car-

ried out on ionospheric data.

3.2 PURE PREDICTION

a. Last-Value Prediction

Perhaps the simplest prediction operation, when the function is known only in

the vicinity of a point, is to use the value at the point as a prediction. See
Fig. 16. In the following discussion we use the term "last-value prediction" for

that kind of operation. For a random process s(t) the error at prediction time

T is

S(t) t

t tl+T t

Fig. 16. Last-value prediction.
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AI(T ) = s(tI+T) - s(t 1 ), (33)

and the mean-square error is

E[A2(T)] = E[s 2 (tI+T)-2s(t +T) s(tl)+s2(tl)] f 2[R(O)-R(T)],

where R(T) is the autocorrelation function (with the mean subtracted out) of s(t). If we

define the correlation time -rc as

R(T) = - R(0), (34)

we see that

E[A2(T) > R(O) for T > Tc

which means that the method is not suitable for T > Tc since we then get a greater
mean-square error than the variance of the process itself. We notice that we do not

use any statistical property of the process with this simple prediction.

b. Maximum Likelihood Prediction

If we know the second-order probability distribution for the process, we can use the

value of s(tl+T) that maximizes p(s(tl+T)/s(t)) as a prediction. We call this "maxi-
mum likelihood" prediction and investigate the case of Gaussian statistics, in which the

second-order statistics are completely determined by the autocorrelation function.

For a zero-mean Gaussian process, p(s(t +T)/s(t )) is a Gaussian distribution with

t
R (T)

S(t) t

~A2(T )

t] t, + T t

Fig. 17. Madimum likelihood prediction (Gaussian Case).
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mean R() and variance R() \R() Since the Gaussian distribution is max-R(O) anvaiceRO
imum at the mean, this simply means we use the autocorrelation function as predictor

(see Fig. 17). The mean-square error for prediction time T is

E[A 2(T)] - E (t+ - R() = R(0) .() (35)

We see that for small T the error is the same as for last-value prediction, but for large

T maximum likelihood prediction is better because E[A2(T)] can never exceed the vari-

ance of the process.

For T = -Tc, E[A2(Tc)] = 3/4 R(O). We notice that for a first-order Markov process

this kind of prediction is actually optimum. The reason for this is simply that the future
behavior of the process is completely determined, in a statistical sense, by the last

value.

c. Tangent Prediction

If we use the tangent of the curve as a predictor, we have another possible way of

simple prediction, using only knowledge of the process around a single point.

Before we can discuss this type of prediction, we need to look into the question of

derivatives of stochastic processes.

Derivatives of a Random Process

Consider a random process x(t) with variance rx and mean mx. Define a function

x(t+v) - x(t)
y(t, T) Z * 0. (36)

We have

E[y(t, -)] 0

E[y2 (t, ) = E[x2 (t+.)_2x(t)x(t+T)+x2 (t)] = 22 [R(0)-R(T)].
T T

dx(t)
When T - 0, y(t, r) is equal to dt , therefore the derivative has a finite variance only

if [R(O)-R(T)] goes to zero at least as fast as T . Since R(r) is an even function, either

R'(0) = 0 or R'(+0) = -R'(-0).

In the last case the second derivative at zero does not exist, and differentiability of a

random process is equivalent to requiring that R'(0) exists. We can state this in terms
of the power density spectrum:

RO(O). -4,2 8(f) df. (37)
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A sufficient and necessary condition for the derivative of a random process to exist

(with probability one) is

$f 5s(f) df <

See Doob2 5 for a rigorous proof.

In the following we assume that the derivative of the random process exists and we

thus have

E[(x'(t))2 ] = -R-(O) (38)

Finally we remark, that since the derivative is a linear function of the original process,

the derivative of a Gaussian process has a Gaussian distribution with zero mean and var-

iance RI(O).

As an example of processes which have no derivative, we can take the first order

Markov process. It has an autocorrelation of the form

R(r) = R(O) e- Ti (39)

(see Doob2 6 for a proof). This function has no second derivative at the origin and a

sample function from the Markov process has no derivative (with probability one) at any
point. This explains why the optimum linear predictor takes such a simple form as an

exponential attenuator.

SMt)t

t1 tI + T t

Fig. 18. Tangent prediction.

Tangent Prediction

We obtain the error for prediction time T (see Fig. 18)
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]i

A3 (T) s(tl+T) - [s(tI)+Ts,(tl)]. (40)

The mean-square error is

E[A2(T)] z E[s 2 (t+T)+s2 (t)+T 2 (s'lt (t 2 -2S(t +T)s(tl)-2Ts(tl+T)s'(tl)+2Ts(tl) s'l(t)].

To evaluate this, we notice that

E[s(t I)s'(t1 )] z lim E [(t 1 ) S I+T)-]--S(t a lim. [R(T)-R(O)]

T-0 L --

= R'(O) = 0

according to our assumption of differentiability. In the same way,

E[s(t 1 +T)s'l(tl ) = -R(T)

and we have

E[A3 (T)] = 2[R()-R(T)-2 R"(0)+TR'(T)] = r(T). (41)

We call this the function for r(T), and by comparing it with the error for last-value pre-

diction we can write

F(T) = E[A2(T)] = E[A2(T)] - T[TR"(0)-2R'(T)]. (42)

As can be seen from Eq. 36, RI(O) is always negative; and for a monotonically

decreasing autocorrelation RI(T) is negative for all T. In this case tangent prediction

is better than the last-value prediction, at least for small values of T.

To get some insight into the expected performance of the different simple prediction

schemes and to be able to compare them with optimum linear prediction, we work out

a few examples, assuming certain forms of the autocorrelation function.

d. Examples

Example 2

Let us first compare the simple prediction methods for the autocorrelation of the

form

R(r) = R(0) exp M- O). (43)

In this case

E T] 2Mz 2R(0)[1 - exp ( )] (44)
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E[4 2(T)].- R(O) Iep(45)

r(T) = R(O) [1+4 (+2 2.)exp (.~ (46)

= TO

T 04n2

These functions are plotted in Fig. 19, and we see that as long as T < rc the tangent
prediction gives the smallest error.

E[AJT)J

S1.0 /2

0.5 R 5(r)=R5()

r/ (T)0

0-
0.5 1.0 T_

Fig. 19. Comparison between simple predictions (Example 2).

Example 3

To be able to compare with optimum linear prediction, consider a process with power
density spectrum

S2 (f) = k2  (47)

(a 2 +f2 )

The corresponding autocorrelation is the Fourier transform of S(f). Applying residue
calculus, we have

R2 (r)z + fw -Z [kz Y 1
which gives
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exp (48)

2 k2 if
where w2 

• - and rO = --2a-. R 2 (r) is plotted in Fig. 20, from which we see that the

correlation time T c is approximately 1. 7T0 .

To evaluate the error of the optimum predictor, we take the *realizable part" of

S2 (f).
= k

G2 (f) 2 2
(ja-f)

and the corresponding function in the time domain is
(Woo

k e2wft [k eJ2wfl

g 2 (t)= ' 2- dt= 2wj Res 21 (t>O)
-- (ja-f) L(ja-f)' I f(ja

which gives

_ t

= k4w 2t e t > 0

=2(t) (49)

0 t <0.

The mean-square error for the optimum linear predictor for prediction time T is

e(T) = YT Ig(t) 2 dt.

(See Davenport and Root 2 7 for a derivation.) In our particular case we have

2(T)-ak216w4  t exp dt- a +l.2 + 2 M,)ep--L).

(50)

To get the error for the tangent predictor we obtain from Eq. 48

2
'0~R20(0) - -LI

0

T
2 T -70

R2(T) - 7 e

which by substitution In (41) yields
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R(0)

0.4
S2(f ) _. k22

(a2 + f2) k /

0.3 /

TANGENT /
PREDICTION

/
0.2 /

OPTIMUM
/ LINEAR PREDICTION

0.1 //

0 I I

0 0.5 rC 1.0 T
0

Fig. 21. Tangent prediction compared with optimum prediction (Example 3).

+2 T 2 rT+T ep o~
(T )T=_ lT+ -+. (51)

"r 0  ro /

In Fig. 21, c2 (T) and r 2 (T) are plotted. We notice that when T c ' o

CZ(T) =r,(T) 4 72.i~

The tangent prediction is thus "asymptotically optimum" in this special case. The reason
is rather obvious. Since the fourth derivative of R2 (T) does not exist at zero, the sample
functions do not have a second derivative and it is not surprising that the optimum pre -
diction is essentially linear extrapolation for small prediction time.

A more complete discussion of optimum prediction for this particular correlation

function has been given by Lee. 13

Example 4

Consider a random process in which the sample functions have derivatives of higher
order than the first.
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Take

S3(f) = (52)

(a 2+f2)
3

In this case we have
IiI

R 3 -r) = 4o- + l 3 T ]e 0 (53)

where

2 k 2 3ir 1
0,3 = and To --

8a 5  o 2ira

R 3 (T) is plotted in Fig. 20 which gives a correlation time -c of approximately 2.3-o .

k

G3 (f) = 3
(ja-f)

_t

k4irt 2 e 0  t >0

93(t) (54)

= 0 t<0

which gives the mean-square errors

2 3 24

2 1T 4T 1 4 0

r 3 3(T) -2 - + 2 -- +-T-7 +-- e (55)
T T O  T T

1"3(T) = 2orl [1"T-2 - +-I- "+ T + "4.4)- el]" (56)

In Fig. 22, e3 (T) and r 3(T) are plotted. For small values of T we have

C3(T) w 1- .2 (' T)
5

T<e To

r 3(T) 
3 ;_

In this case the tangent prediction gives a one order of magnitude larger error for small

prediction time. According to Fig. 22 it is nevertheless performing rather well com-

pared with optimum prediction as long as the prediction time is shorter than the
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Fig. 22. Tangent prediction compared with optimum prediction (Example 4).

correlation time.

As long as we are working with power density spectra that are rational functions,

the integral

S f2 n S(f) df

is not convergent for n larger than a certain value, and accordingly the sample functions

cannot have derivatives of arbitrarily high order. The two examples that we have given
seem to indicate that it should be possible to obtain a prediction that is "asymptotically
optimum" (for T approaching zero) by using the existing terms in the Taylor series

expansion of the sample function. If we apply this point of view, tangent prediction can
be considered as the first-order approximation of such an "asymptotically optimumu pre -

dictor.

e. Conclusions

It is difficult to make any general statements on the basis of a few examples, but
the previous discussion supports the view that tangent prediction should not be an
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unreasonable thing to do, at least under certain circumstances. To be able to construct

an optimum predictor, we need to know the power density spectrum, or autocorrelation

function, of the process. The tangent prediction, on the other hand, does not use any

statistical properties of the process and it is simple to instrument. Since obtaining the

derivative is a linear process, tangent prediction is, of course, always inferior to opti-

mum linear prediction. If, on the contrary, we do not know the autocorrelation function

accurately enough, or use a predictor design for a particular prediction time under a

maximum time interval, we could perhaps do just as well with the simpler tangent pre-

diction. The mean-square error of the optimum predictor can never exceed the vari-

ance of the process, but there is no limitation for the error of tangent prediction for

large prediction time. If we want to employ tangent prediction, we must be sure that
the prediction time is at least not greater than (say) the correlation time for the process.
Moreover, we have seen that it is mainly useful only for random processes with mono-

tonically decreasing autocorrelation functions.

We shall now modify the prediction operation in order to work with processes that

are disturbed by noise.

3.3 SMOOTHING AND PREDICTION

Noise is often present together with the random process that is to be predicted. Tan-

gent prediction cannot be expected to perform well in that case. Assume that we have a

signal s(t), together with noise n(t), so that the wave that we have to work on to predict

s(t) is y(t) = s(t) + n(t). The derivative of y(t) is s'(t) + n'(t), and, even if n(t) is much

smaller than s(t), its derivative n'(t) need not be small compared with s'(t).

To employ the idea of tangent prediction and to be able to introduce the necessary

smoothing operation, we assume that the random process y(t) is sampled at times 6

seconds apart. If we use a certain number of samples to compute a regression line for

use as a predictor, we have an operation that averages out the effects of the noise. In

ynt)t

A( T)

-r 0 T t

Fig. 23. Regression line prediction.
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the noiseless case it is identical to tangent prediction when 6 becomes very small. See

Fig. 23.

a. Regression-Line Prediction

Let us state the problem more precisely and derive an expression for the mean-

square error. Assume that we have samples of a wide sense stationary random process

y(t) = s(t) + n(t) sampled at times 6 seconds apart. To predict s(t) we use a straight
line a + bt, where a and b are chosen so that

*(ab) = f [y(-v6)-(a-bv6)] 2  (57)

is minimum. The expressions for a and b for the particular time origin chosen in
Fig. 23 are given in Appendix C.

The mean-square error at prediction time T is

A(T) = E[(s(T)-(a+bT)) 2 1. (58)

This expression is evaluated in Appendix C with the following assumptions: the noise
has zero mean and is uncorrelated with the signal and is also uncorrelated between dif-

ferent samples. It is assumed that the time T used to compute the regression Line is
short compared with the correlation time for the signal.

Under these assumptions, we have

[ _NIT] 3 2  
3 T + 2N+i]159A(T) = r(T) + (T) + N - +- 4 (N) - [31i + 31+ 2N . (59)

Here, r(T) is the error for tangent prediction.

% (T)= Tf T2I(R"T)-Rs(0))

2

O(N) =
(N+l)(N+2)

T= N6

and -n= E[n 2(t)] is the variance of the noise.
Since we have the relation

R:(T) = -4w2 f2 Ss(f) ej 2wfT df >-4w 2 f2 S(f) df= R-(O),

we see that *(T) > 0, and regression-line prediction thus always gives a greater error
than tangent prediction.

The second term in A(T) is increasing for increasing - and it is possible to inter-

pret it as being due to the fact that the regression time is equal to the derivative only
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when T goes to zero. The third term depends on the noise. Since we have assumed

that the noise is uncorrelated between samples, it is natural to get the result that the

term decreases as 1/N for large N. This means that it is advantageous to increase

the sampling rate, at least as long as the noise is still uncorrelated between samples.

Contrary to other smoothing operations, any attempt to filter out the noise before

regression-line prediction only gives greater error.

b. Minimization of the Mean-Square Error

The second term in A(T) is increasing and the third term is decreasing with r, and

for a given T and 6 it is possible to minimize A(T) by choosing T properly.

Let us work this out for N >> 1. We can write

T 1 T2 ¢n [,T- + ,T
AM(Tr(T) + (T) +'-2 + T + +  .

If we call /T = a, we get

)V(T) K 1 46.2

= fn 3l1a). (60)

* (T) T 2a +6a + 9

The function 0 1(a) is plotted in Fig. 24.

As an example, consider

R (t) = o, ex )

with 2 T0= 20 sec; T = 10 sec; 6 = 0.5 X 10- 3 sec (corresponding to wn f 103 cps); and

r) = 10 3 . We obtain Q.(a) = 6. 7 x 10 - . According to Fig. 24 the correspondingO'S/ 10. 03 X 10

a is approximately 0. 03 which gives N = -3 -
f= 600 and our assumption of N large

is satisfied. 0.5 X 10

If we are not Willing to compute the regression line by using more than a certain num-

ber of samples, we have another minimization problem. Given T and N, determine the
SN6

6 that minimizes A(T). Remembering that a = -- -- , we have

BA(T) *(T) r -i1 '(N 2

a -T--N [+ [6 +

which gives
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Fig. 24. The function01()
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Fig. 25. The function (N. a).
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3 N-i
12r Na 3 1+--i (61)- ffi~~.u~ = £ 2(N, a). (i
* (T) - *(N)[2+aJ 2

a is plotted in Fig. 25 as a function of a for different values of N.2i

For the same example as before we get A2 (N, a) = 0. 04, which for N = 10 gives a =

0.15.

The practical value of these minimization procedures is limited by the fact that the

derivation of A(T) was made with the assumption of r small.

3.4 COMPUTATIONS ON IONOSPHERIC DATA

a. Source of Data

The data were obtained from Group 34 of Lincoln Laboratory, M. I. T. The trans-

mission link used was 1566 km from Atlanta, Georgia, to Ipswich, Massachusetts. A

pulse of approximately Gaussian shape and bandwidth 30 kcps was transmitted every

1/15 sec with a transmitter peak power of 10 kw. Through a gating circuit at the receiver

the maximum amplitude of the received pulses corresponding to the different paths was

recorded. A "Datrac" equipment was used to quantize the samples into 64 levels and

they were put onto magnetic tape as 6-bit numbers in a format corresponding to that for

the IBM 709 computer. The records thus correspond to 6-bit samples of the path

strength sampled 15 times a second.

b. Presentation of the Data

From a large collection of data two records were chosen rather arbitrarily. These

were obtained on February 16, 1960, at 10:52 a. m. and 12:12 p.m. EST, respectively,

and the carrier frequencies used were 8. 35 mc and 18. 45 mc, respectively. Of the first

record, which we call A, 9724 samples were available corresponding to a recording time

of approximately I I minutes. Record A is probably a return from the F-layer of the

ionosphere making 3 hops. In Fig. 26 it is plotted from the magnetic tape by the use of

the computer. In the figure is also the identification word on the tape. The second

recording, which we call B, contained 5271 samples, corresponding to approximately

6 minutes recording time. Record B is classified as a I -hop F-layer return and it is

plotted in Fig. 27.

Record A looks more stationary than record B and to show this the mean and var-

iance, computed by using the first and second half of the record, are given below.

Record A Record B

Whole Whole
Part of record: Ist half 2nd half Record Ist half 2nd half Record

Mean 18.32 21.47 19.89 31.11 39.99 35.55

Variance 79. 0 107. 3 95. 6 146. 1 263.5 224.5
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Fig. 28. Autocorrelation function, Record A.
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Fig. 29. Autocorrelation function, Record B,

Examination of the distribution functions for the records shows that Record A is approx-

imately Rayleigh distributed; Record B is neither Rayleigh nor Rician.

The normalized autocorrelation functions for the records are presented in Figs. 28

and 29.

c. Results

Regression-line prediction was performed on the two records with the use of a com-

puter. The computer calculated a regression line, using a certain number of samples

corresponding to the prediction time T, and determined a new regression line. The pre -

diction error was defined as the difference between the end of the old regression line
and the beginning of the new one. The procedure was repeated through the whole record.

In Figs. 30 and 31 the variance of the prediction error is plotted versus prediction time.
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Fig. 31. Mean-mquare prediction error, Record B.
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Different curves are given corresponding to number of samples used to compute the

regression line. The statistics of the error were also computed and in Figs. 32 akd 33

the distribution functions are given for different prediction times, plotted on normal

distribution paper.

Record B is hardly stationary over the recording time. We can expect the prediction

error to be more stationary than the process itself; and to illustrate this the prediction

error is plotted below the corresponding record in Figs. 26 and 27.

To compare the calculated mean-square error with the theoretical formula (59) we

need to know certain derivatives of the autocorrelation function and the signal-to-noise

1 : :' . .II

.K rT

" :" ::. ,i"*. ' '. ., : i . : ii ;: . ..

1,

4
T- --7

:l1:1,. I I, I .
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* * . . I.*

I * . I . .

Fig 2. Distribution functions for the error, Record A.
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ratio for the record. The autocorrelation function used in Example 3 was used to rep-

resent that of Record A by making the correlation line - for both curves to coincide.

The signal-to-noise ratio for Record A was estimated to be 20 db, and the theoretical

curve in Fig. 30 was obtained.

d. Discussion

The calculations performed show good correspondence with the theoretical results.

It is interesting to notice that the correlation time for Regord B is much longer than that

for Record A, but Record B actually gives a larger prediction error. The reason is

obvious if we compare the autocorrelation curves. When using regression-line prediction

it is the behavior of the autocorrelation function around the origin that is of importance,

- - .:" ;- - --i : ,!, _ -'" " ,- -. .. ' -.

I 
.. . ,

c -......- 
-

1"

.. .. -i l :1
,  ;,; ,-' ' :. . ' i"
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1 - 0 • 5 4,5 #' 0 +i S' H t
, . , . . . . . . .. . ? ,, . - . ,-

Fig. 33. Distribution functions for the error, Record B.
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and we see that Record B actually has lower correlation for small correlation times

than Record A.

According to Eq. 59, it is advantageous to use as many samples as possible to com-

pute the regression line, as long as the noise is still independent between samples.

From this point of view, the data are not sampled densely enough and it should be pos-

sible to reduce the time required to compute the regression line considerably.

Regression-line prediction should be useful in other applications as well. The effect

of a slowly time-variant mean is suppressed in the prediction error, and regression-

line prediction thus provides a way of dealing with certain types of nonstationary proc -

esses. In some applications it should be possible to characterize a fading medium by

the prediction error and thereby greatly reduce the amount of data necessary for a

description. The drop-outs in Record B give a number of large prediction errors and

it is hard to say whether or not the distributions presented in Figs. 32 and 33 can be

called approximately Gaussian. However, the statistics for the error in the two records

seem to be more nearly alike than do the statistics for the two processes themselves.
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IV. THE RECEIVER

4.1 INTRODUCTION

We have been dealing with the problem of choosing a useful model of scattering propa-

gation and a method for measuring and predicting the parameters of the model. We

arrived at a multipath model with slowly varying paths, each of which is characterized

by an amplitude strength and a phase shift. By utilizing the prediction procedure pre-

sented in Section III, we can get an estimate of these quantities during the communication
intervals. We assume that the Doppler shift (or frequency offset between transmitter

and receiver) is small enough so that it is possible to make a reasonable prediction of
the phase, and furthermore that the path delay can be considered constant between suc -

cessive measurements of the channel.

The situation with which we are dealing is one in which the receiver has some knowl-

edge about the random channel and we want to determine the best way to use this knowl-

edge. To simplify the receiver, we assume that the decision is made on each received

waveform separately and that we have no overlap between waveforms so that the received

waveform, on which the decision is based, is due to only one transmitted waveform.
This means that our receiver is not strictly optimum. The estimates of the channel

parameters are certainly dependent within the prediction interval but probably not
between intervals, and we hope that we are not too far off from optimum performance.

4.2 COMPLEX WAVEFORMS

To derive the receiver structure we use complex notation for bandpass functions.

We shall now give a brief introduction to the needed concepts.

IF!(f)l

-Ft

_f CW a f

Fig. 34. Fourier transform of narrow-band real functions.

Assume that we have a real narrow-band function s(t) whose frequency spectrum

(i. e., Fourier transform) is centered around the carrier frequency fo. See Fig. 34.

It Is then possible to represent s(t) by a complex waveform 4(t), so that
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8(t) a Re [NO)].

If we write

4(t) - x(t) e
we get

s(t) = Re [x(t)] cos wo t -Im [x(t)] sin w 0 t =xc (t) coo Wot - xs(t) sin Wot.

Here, x (tM and x s (t) are the quadrature components of s(t), and it is possible to show
that

xt)aRe [2 $0 F M(f -fe t df] (62)

x S(t) = Im [2 F 6 (f) e j~~-otdfJ (63)

where F (fM is the Fourier transform of s(t). This shows that if s(t) has bandwidth 2W

around f0 * x (t) and x,(t) are lowpass functions with bandwidth W.

It is also possible to represent the "complex amplitude" x(t) by an amplitude and a

phase angle

The complex notation is actually valid for an arbitrary s(t), but it is especially useful

for narrow-band functions, since Ax(t) and On(t) then correspond to the physical ampli-

tude and phase of the signal.

We shall use correlation integrals involving complex waveforms, and it can be shown
that for narrow -band signals

Re [S * (t) q1(t) dt] = T (xc(t) YC(t)+X5 (t) y5 (t)) dt 20 2 Ts(t) n(t) dt (64)

IM [5  * (t) q(t) dtJ (X(t) y5 (t)-x(t) Yc(t)) dt a"2 5 s(t) *(t) dt (65)

S 4 ~*(t) -q(t) dtj 2 - envelope of 5 s(t) n(t) dt, (66)

where

*~) Re [4(t)] = Re [1(t) e jOI

n(t) = Re ['1(t)] a Re [Y(t) e Wot]

(fi(t) denotes the Hilbert transform of n(t). n(t) a (ir)for narrow-band function.)
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One way of computing these integrals is by using the matched filters of Fig. 35.

Thus far, we have considered only waveforms for which the Fourier transforms exist.

If we deal with narrow-band random processes, it can be shown that exactly the same

representation holds in a limit-in-the -mean sense.

tSn(f)

N
0

W

Fig. 36. Power spectral density of bandlimited white noise.

If, for instance, we have white bandlimited noise with power density No(watts/cps)

over a bandwidth W such as that in Fig. 36, its quadrature components are independ-

ent lowpass functions with zero mean and identical autocorrelatlon functions.

Rs(r) = R (T) WN o sin WWT (67)

4.3 COMPUTATION OF PROBABILITIES

Our communication system is of the type pictured in Fig. 3 in which the notation now

indicates complex waveforms. According to statistical decision theory, the optimum

receiver computes the set of a posteriori probabilities P(4m(t)/4(t)) in order to make

its decision. As was briefly mentioned in Section I, this is equivalent to computing the

set of likelihoods

Am - p(4(t)/4m(t))

for every possible waveform. We shall now consider the operations involved in more

detail.

a. The "Likelihoods"

Our channel model is very similar to that of Turin2 1 and we are going to use essen-

tially the same technique to obtain the receiver structure.

Using the notations given in Fig. 3, we transmit a certain waveform

4m(t) a xm(t) • 0 4 t 4 T. (68)
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Depending on the multipath structure, the output of the random filter is

Vm(t) = ai Xm(t--ri) exp [J(wot-0i)], (69)

i=

where ai l ei and Ti are the amplitude, phase shift, and delay associated with a particular

path. White Gaussian noise is added to the output of the random filter so that what is

actually received is

4(t) = Vm (t) + ql(t) = z(t) exp (jwot). (70)

According to our assumptions, the receiver knows the delay and has estimates of the

amplitude and phase for every one of the L paths. We assume that the paths are varying

slowly enough so that these parameters can be considered as constants during the recep-
tion of a waveform. Let us denote the actual amplitude and phase of the L paths by the

vectors

S= (a I , a 2 l .... *a L )

=(Oi, 02 ... ,eL).

We then have a probability density of ZL variables for the occurence of a particular set

of F and 9. Since we probably can assume that the estimation errors are stationary

with zero mean, we have the same shape distribution but with different means from

decision to decision.
th

To obtain the "likelihood* under the assumption that the m waveform was sent, we

first calculate the conditional probability density for a particular set of channel param-

eters. Using the fact that the additive noise is white and Gaussian, we can show that

A -g = p(%(t)/IIF) = constant ex SI d kjthv),(t)12 dt) (71)

where No is the noise power per cycle (cf. Fig. 36) and Td is the duration of the received

signal. We multiply (71) by the probability density for the channel parameters and inte-

grate, which gives

A aconst. 5- ... exp(- ° 2N d I (t)-vm(t)12dt) p(l , ) ME dl, (72)
~2L~ oO

where dld denotes da I l .... daL del .... dOL.

Td I (t)-(t)t) ddt (t), dt - d C(t) v(t)+ (t) ve(t) dt$0 0~)2d OY
+ YTd I vm(t) 12 dt. (73)
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The first term SI[(t)I dt is not dependent on the index m or the integration variables,

and we can incorporate it into the constant in front of A. The last term does not depend

on the received waveform and the second term can be written by using the complex nota-

tion in (69) and (70)

d [t(t) v*(t) + t*(t) VM(t)] dt - 2 ai[Umi sin i  Vmi C 01i, (74)

where
Umi = Im

m

Vm i  Re1 1 T d  z (t ) x  I ( t - T i) dt"

The correlation integrals Ur and V. can also be written as given in (64) and (65), and

according to Fig. 35 we can compute them by passing the received wave through a filter

matched to the transmitted waveform. Notice that we need (at least in principle) only

one filter for each index n; all of the Umi and Vmi (i=, 2, ... , L) can be obtained by

sampling the output from the matched filter at the right instant of time.

The decision procedure thus is to compute the set of correlation terms Umi and Vmi

(inl, 2, ... , L) for each possible waveform and then combine these terms to get the "like-

lihood" function A. U and V are sufficient statistics in the sense that they contain all
of the information about the received waveform that is needed to make the decision. To

proceed further, we now make the assumption that the transmitted waveforms have cor-

relation functions that are narrow compared with the delay between paths. This means

that

(T) * x(t)xm(t-T) dt - 0 for TM i - T all m and i,ju 1,..., L.

(75)
If we also assume that all transmitted waveforms have the same energy,

2E z 0 .xM(t)1 2 dt all M, (76)

we can write

L

Yd I vm (t)12 dt= 0d aiajxm(t-,ri ) x*(t-Tj) dt ' 2E a . (77)
i j

The exponential in (72) now factors into a product of terms. If the paths are statistically

independent, we can also factor the probability density and we have
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L 00 al E
in Am a C + in • (Umi sn 81 + Vmi coo 0-o ) i(a.i 011 dai dei

L
= C + W(Umi, Vm). (78)

i=l

We see that under these assumptions we can weight the contribution from each path sepa-
rately. The weighting functions Wi depend on the distribution of the path parameters,

but not on the signal index m. The variables in the weighting functions U and V are

random variables and their distribution depends on the channel variation, the noise, and

the particular waveform that was actually transmitted.

b. Distribution for the Sufficient Statistics U and V

As we have pointed out, U and V contain all of the information that the receiver

needs to make its decision, and a simple way of computing them is by filters matched

to the possible transmitted waveforms.

To evaluate Umi and Vmi when the waveform with index k was sent, we write

Umi/k Im} 0Td( i aix (t-ri) ejel + n*(t x (t-v i ) dt. (79)

We have assumed that the transmitted waveforms had narrow correlation functions.

We now make the additional assumption that the crosscorrelation between signals is
small for shifts corresponding to the differences in path delays.

(.0 5 x*Mt) xk(t-v) dt 2 0 for T = Ti -T. (80)

Si,j= 1,2. ... , L

all m and k

We need then consider only one term in the sum in (79) which gives

Umi/k = ai[Bkm sin B+ km e] + I T Td n*(t) xmlt--i) dt (81)

Vmi/k [ E([) cos s sin Oi] + ReTd n*(t) xm(t-Ti) dt, (82)
mik k m0 M

where E(C) and E(s) denote the real and imaginary parts of the complex crosscorrelationkm km
between signals:

cm  Re xklt) xmlt) dt a xck(t) xcm(t) + Xsk(t) xsm(t) dt (83)
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)

E(s) = Im x (t) xm(t) dt = Xk(t) X (t) - x (t) xcm(t) dt, (84)
km k ck sm sk c

Since we assume that the noise is independent of the channel, we can consider Umi/k

and Vmi/k as the sum of two independent random variables.

Umi/k = Umi/k + un  (85)

Vmi/k = Vmi/k + vn . (86)

The noise is Gaussian and un and vn are obtained by a linear operation on the noise, so

they are Gaussian variables with mean, variance, and covariance given by

E[un] = E[Vn] = 0 (87)

E[u 2 ] = E[v 2 ] = 2NoE (88)

E[unvn] = 0, (89)

where E is given by (76).

Hence un and vn are independent Gaussian variables with zero mean and equal var-

iance, independent of the indices m and k. By using Eq. 80, it is easy to show that the

distribution is also independent of the path index i. The remaining terms Uml/k and

vmi/k are linear combinations of the channel parameters, and we can write
E(c) x + E(S) (90)

Umi/k = km i km Yi

v mi/k =E(c) y - (s) x (91)
V km i km i

Here, we have written the channel parameters in Cartesian coordinates.

xi = a i sin e. (92)

Yi = ai cos e . (93)

Equations 90 and 91 correspond to a rotation and linear scaling of the variables xi and

Yi; this means that the joint distribution of Umi/k and vmi/k has the same form as the
distribution of xi and yi apart from the direction of the coordinate axis and a scale

factor.

Let us define a new pair of variables by the rotational transformation.

-L [(s) u -(C) v(4
un/k =f P-km E k m Umi/k-Ekm Vmi/k] 94

Vmi/k 1 [E u mi/k kmV mi/k ]' (95)
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where Pkm = (E m) + (E) . We then have

Urni/k = OkmXi

Vmi/k = OkmYi

which gives

P , ( r , s ) ff P m p xi  Yi( 9 6 )

~km

This connection between the two distriubtions is illustrated in Fig. 37. Equation 96 gives

the distribution for the part of U and V that depends on the channel. To get the

tv

(O'a) 1~

xU

px,y( ) PU'v()

(3) (b)

Fig. 37. Probability density functions. (a) Distribution for path parameters.
(b) Distribution for decision variables.

distribution for U and V themselves, we have to add the part corresponding to the noise.

Adding independent variables corresponds to taking the convolution of the probability

densities, and we finally have the joint distribution for U and V.

(0lr _t p (ur) (VI-s)2)
x i NoE 2NoE

(97)

To simplify our discussion, let us assume that the probability density for the channel

parameters is symmetrical around some axis. We can assume symmetry around the
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y-axis, since a rotation of the xy-axis corresponds to an identical rotation of the

UV-axis. We then have

E[x 1 ]. o

E[yi] = ai

E[x'] Z=W
1

E[(yiai)2 ] = 0.2

It is convenient to introduce new normalized variables

U Umi/k ; V0 Vmi/k (98)0~ik . 2E ~ mi/k = ___2E

mi/k 0. 2E/
Yi Yi

x. Yi
0 1X? i (99)

Yi Yi

The signal power at the transmitter has no real significance, since we can have a gain

or attenuation in the channel and we therefore define a signal-to-noise ratio at the

receiver
02+.2 2

(r2 + 02+ a i
2 xi Yi

d 2 E. (100)
1 No

Clearly, d2 is the average signal power for the i t h path at the receiver divided by the
1noise power density. We define two other quantities

a

c =7 (101).y

y
C =0. cr(102)

Since a is the nonrandom part of the path strength, c. is a measure of the uncertainty

in path strength. Similarly, c* can be considered as a measure of the uncertainty of

phase.

E [x°2] c; E[(y'c )2 ] (104)

Then, under the assumption that xi and y, are independent, we obtain for the mean and

variance of our normalized decision variables
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E(C)E[U°/k] c (105)

m(c)

1(106)

( E(c)2 f~ g\2 c2 +c2 +2ok4 2 -k 0~i a i+
c i k! 2+ + 2 2o(107)

Lm /kJ , /.c, 2d21i

/ 2 2 2 2 +
E(S)v o  4 i +C ai +

T I[V mi/kl 2E)~ c + \2 + 2d 2 (108)

1

When we test the hypothesis that the kth waveform was transmitted we have

E(s) 0 0, E ) . 2E
kk ' kk

S[Uii/k = 0

E[V = (109)E[Vi/kl C.ai

c2 + c 2 +I

2oci ai1 
(110)* [Ukik ] : c+i + 2d 2

2 2+

c 2+c + Ir~rvo  Ia.

* 2 IV~.k 0 + 1 21 a (111)ki/k = l+ 2d 2

The probability density for the normalized decision variables under the hypothesis that

the correct waveform was sent is identical with the normalized density for the channel

with the addition of Gaussian noise. We know that the other decision variables have the

same type of distribution but centered around other points in the U°V°-plane and

depending on the crosscorrelation between signals. For the important special case for

which all signals are orthogonal, i.e.,

E(S) = E(c) Z 0 all k 0 m
km km

we have

E[Umi/k]  E[Vmi/kI =0 (112)
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c2  c2

a.Umi/k] = 2 [ a2[Va m 0 k (113)

which is a symmetrical Gaussian distribution around the origin. The decision variables

for different hypotheses are in general statistically dependent but in the case of orthog-

onal signals they are independent.

c. The Weighting Function Wi(U. V)

We have seen that the distribution for the decision variables U and V is closely

related to the distribution of the channel parameters. The weighting function given by
(78) represents the weight that should be put on the U and V connected with a particular

path. It is still convenient to work with normalized variables. Substituting Eqs. 92,

93, 98, and 99 in (78), we get

Wi(oo)ln $ xp...L [2uox+2voyx2 yj pi (x, y) dx dy, (114)
00 - J N o

where P0 (x, y) denotes the density function normalized according to (103) and (104). It

is in general not possible to solve the integral in (114) and obtain W(U, V) in closed form;
nevertheless, it is possible to determine certain properties of it. In Appendix D we

prove that W(U, V) has a minimum at a finite point in the UV-plane unless the whole prob-

ability mass of P0 (x, y) is located in a half-plane. Its second differential is always pos-
itive which means that the function is monotonically increasing from the minimum point

in all directions. If P(x, y) has a symmetry line through the origin in the xy-plane,
W(U, V) is symmetric around the same line in the UV-plane.

To illustrate the connections between the different concepts involved, we work out

in detail the case in which the channel parameters xi and yi have a joint Gaussian dis-

tribution. With

p°(x, y) Z exp exp x.

we easily obtain, by completing the squares in the exponent in (114),

2

2 V + e(ec wau° 2°  b 2 --- -- l e i~ + ,115

i  i J

where
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Z2 E 2d 2

ico

ei I~ 1+ c + c2  (116)

a1 = 0 (117)

bi = ei (18)

Here, c, c i and d are the normalization parameters defined in (100)-(102). We see

that W(U, V) is an elliptic paraboloid centered around the point -cai /e i on the V-axis.

The decision variables in this case are all independent Gaussian variables if we assume

orthogonal signals.

v o 0, u ( . I.xp,
Uk/k 2w + 1/el 2((i

x 1 ex _____111_____1_
VX + I/e i  211/e i ) 19)

e. f 2 2 ~PU,V) =--exp exp k- . (120)
Vm/k m/2/

For the special case in which c = 1, W(U, V) is a circular paraboloid and the distribu-

tion for the channel parameters is Rician (cf. Eq. 8) for the amplitude. In Fig. 38 this

situation is pictured for a certain signal-to-noise ratio. The probability densities of

U and V for the correct and incorrect waveforms are drawn in the same graph as
W(U, V). To minimize the probability of errors, these two probability densities should

be placed as far apart as possible in the paraboloid. Since the location of the distribu-

tion for the incorrect waveforms depends on the crosscorrelation between the signals,

it is in general advantageous to use signals with a negative crosscorrelation: Ekm < 0.
If we use the prediction procedure outlined in Section I, there is no special reason to

expect the statistics of the channel to be Rician. Since we estimate amplitude and phase

separately, it seems more likely to get independent, approximately Gaussian errors in

amplitude and phase which correspond to a distribution of the type given in Fig. 37. On

the contrary,we have seen that the general character of W(U, V) as a ubowlO is independ-

ent of the shape of the channel distribution. It therefore seems plausible that the
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Fig. 39. Block diagram for the weighting function W(U, V) (Modified Rician Case).

decision function will work well for any probability density that has the form of a single

"hill." By choosing c > 1, we get a distribution with larger uncertainty in phase than
the Rician distribution, which perhaps corresponds better to the real situation.

To arrive at the form of W(U, V) in (115), we made the assumption that the channel
distribution was centered around the y-axis as in Fig. 38a, which is for zero phase. In

general, we have an estimate of the phase shift different from zero, but it is easy to take

into account by "rotation" of the UV-plane, since a rotational transformation of x and
y corresponds to an identical transformation of U and V. The last term in (I15) is a
constant and we can simply ignore it when we form the "likelihoods' (78). To compute

the rest of W(U, V) we can, for instance, use the diagram in Fig. 39.

d. Receiver Block Diagram

The receiver structure can be summarized as follows. Compute the decision vari-

ables U and V for each possible waveform. Combine the U and V for a particular

path, using the available knowledge about the amplitude and phase of that path. By adding
the W(U, V) for each path, the likelihoods are obtained and further decision depends on
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Fig. 40. Receiver block diagram.

a priori probabilities and costs, or on some other criteria that depend on the practical

situation.

There is no reason to suspect that the statistics for different paths should differ in
general character and it should, therefore, be possible to use the same weighting func-

tion for all of them. We have pointed out that all of the U and V corresponding to a

particular waveform could be obtained by sampling a matched filter at times corre-
sponding to the path delay. We can by proper gating use the same weighting box for all

of the paths and have the receiver shown in Fig. 40.

4.4 DISCUSSION

The receiver structure that we have obtained is not too complicated. It consists

basically of a set of matched filters, one for each possible waveform. By weighting the

outputs from the filters corresponding to different paths properly, the "likelihoods" for

each waveform are formed. The form of the weighting function was derived for the case

of a "modified Rician' distribution for the paths. It has been shown that the weighting

function is not sensitive to the detailed form of the path statistics, and it seems likely

that the derived function should work well even for other reasonable statistics.

It should be emphasized that certain assumptions about the transmitted waveforms
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were made in order that the mathematics be tractable. We assumed that there is no

overlap between different signals caused by the multipath and that the waveforms have

narrow correlation functions compared with the time delay between paths. These

assumptions make it possible for the receiver to separate the parts of the received signal

for different paths. We can say that the multipath structure is used to obtain independent

copies of the transmitted signal disturbed by noise, and, in principle, we have the same

situation as that for diversity reception.

The probability of error is determined by the distribution of the decision variables

U and V, under different hypotheses as to which waveform was actually transmitted.

Turin 2 2 has computed the error probability for a single Rician path when only two orthog-

onal signals are used, and his results are directly applicable to our receiver.

It is well known that the detection probability for signals of random phase is not much

less than that for completely known signals when the signal-to-noise ratio is high. See,
10

Helstrom, for instance. On the other hand, when the path strength is weak, and hence
the signal-to-noise ratio low, our receiver cannot obtain a reliable estimate of the phase,

and the decision is made mainly on the envelope of the received signal. The question

arises if the gain obtained by estimating the phase is significant in terms of probability

of error or signal-to-noise ratio. If it turns out that it is not worth while to estimate

the phase, we must question whether there is any real need for information about the

path strength. If only one path is present, this is clearly not the case, and if we have

several paths, we use the estimate of the path strength only to properly combine the

decision variables corresponding to different paths. As we have pointed out, our

receiver is very similar to a diversity combiner, and (as shown by Brennan 5 ) the dif-

ference in performance between different diversity techniques, with or without knowl-

edge of the actual signal strength, is not great. If neither phase nor amplitude for the

paths need be estimated, the only knowledge the receiver needs about the multipath struc-

ture is the path delays.

Many important questions need to be answered before claims can be made about the

practical value of a communication system such as the one outlined in this report. Nev-

ertheless, our model provides a way of supplying the receiver with knowledge about the

random channel in a way that it is possible to analyze mathematically, and the results

obtained should give insight into the problem of what can be achieved by applying statis-

tical communication theory to a multipath medium.
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APPENDIX A

Sampling Theorem for Time-Variant Filters

Assume that we have a linear time-variant filter which we characterize by its
response function

h(y, t) = response at time t of an impulse applied at time t-y.

For an input u(t) we then have the output v(t)

v Zt) = h(y, t) u(t-y) dy. (A-1)

For a realizable filter h(y, t) = 0 for y < 0.

We can define a corresponding frequency function

H(jf, t) u h(y, t) ejWfy dy (A-2)

H(jf, t) is the Fourier transform of h(y, t) with t treated as a constant, and we can make

the physical interpretation

H(jf, t) = Response to ej ft  (A-3)
eJ2wft

If u(t) is a bandpass signal, fc - j I 1 fc + -M, we can put an ideal bandpass filter

before our time -variant filter without changing anything (see Fig. 9). Thus

v(t) = E h'(y, t) u(t-y) dy u(t) bandlimited (A-4)

Here, we consider the cascade of the bandpass filter and our original filter as a new

filter with response function hl(t, y). The corresponding frequency function is

ZHljf, t) re--a" . fj 4re +2"

Hf(jf, t) (A-5)

0 otherwise

and we can write

h'l(y.t) S c 2 ej2wfy h(y, t) e-j2wfy d df

+ SIx ef 2 (S_ 0 h(y, t) e-JZwfy dy)df (A-6)
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The Fourier transform of h'(t, y) with respect to y is bandlimited for all t and we can
24

apply a sampling theorem. Using the notations of Woodward, we have

h'(y. t) = h' (A-,t) sine w(y--R) Cos 2wfc Gy--!)woo

nl -00

- 9' (Lt) sinc w(y--) sin 2wrfc (y- 0  (A-7)
nm-co

where A denotes Hilbert transform with respect to y and sinc x= sin wx (see Woodward 2 4

WX

for a derivation). Substituting (A-7) in (A-4), we get

00

vMt h'(R,t) YO sine:wyA cos 2wfc(y--!) u(t-y) dy

n=-oo

- ~ s(~Y) 5 sinc: w(y-a) sin 2wfc(y--R) u(t-y) dy (A-8)
n=-oo

By changing the variables of integration the integrals can be written as

Icn(t) = u(t-a)* sinc wt • cos 2irfct (A-9)

Isn t = u(t-a)* sinc wt -sin Zfct. (A-10)

where * denotes convolution.
The Fourier transform of sinc wt • cos 2wfct is

Jr[sinc wt • cos 2wfct] z y [ect + rect (A-11)

rect x I xI <1/2

0 IxI > 1/2

Since convolution in time corresponds to mu tiplication in the frequency domain we real-

ize that Icn(t) corresponds to passing u(t- n ) through the bandpass filter in Fig. A-I.

According to our assumptions u(t) has no frequency components outside the passband of
this filter and we simply have

Icn(t) =a -u t_ (A-12)

In a completely analogous way we obtain the result that Isn(t) corresponds to passing

u(t- n ) through the filter in Fig. A-2. This is simply a Hilbert transforming filter for
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Fig. A-2. Hilbert transforming bandpass filter.

61



bsndpass functions and we have

I (t = IA ( _ n(A-13)

Using these results we finally have

EXAMPLE

Consider the filter in Fig. I11 consisting of a cascade of a frequency shift Af and a

time delay 6. The corresponding frequency function is

H(jf, t) = A e j2f f(A-is)f++ f>

el(ZWAft+) f < 0

If we restrict the filter to a bandwidth w around fc , we have

H' (jf, t) = A e j~f rect ( -fS ) ej(Zw'&t+) + rect ( f~) ej(Zw'&tt41 (A-16)

The corresponding function in the time domain is

h'(y, t) = A2w sinc: w(y-6) cos [2w(f 0 (y-6)+Aft)++] (A-17)

In the same way
A
h'(y~t) a A2w sinc w(y-6) sin [2nr(fc(y-6)+Aft)+4i]. (A-i8)
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APPENDIX B

Modulated Random Processes

We want to determine the conditions under which a random process of the type

a(t) = xc(t) cos kt - x (tM sin kt (B-1)

is (strict sense) stationary independently of the value of k.
For a strict-sense stationary process all moments are independent of time. We have

the first-order moment of a(t).

E~a(t)] = E[xc] cos kt - E[xs] sin kt (B-2)

The only way that we can get this to be a constant that is independent of time for every

value of k is by setting

E[x] = E[x5 ] = 0. (B-3)

The second-order moment is

E[a 2 1 = E[ 2] cos 2 kt - 2E[xcxsI cos kt -sin kt + Ex] sin 2 kt

and the only acceptable solution is

E [x2] = E [ 2] . W 2 (B -4)

E[xcxs] = 0. (B-S)

For the third moment we have

E[a 3 ] E E[X ] cos 3 kt - 3E Ix cxs] cos 2 kt -sin kt

+ 3E lx 21cos kt sin2 kt - E s~] sin 3 kt (B-6)

which gives

E [x3j E xx]= E 2 = E [xs] = 0. (B-7)

For the fourth moment we obtain

E[a4 ] a E[v4] cos 4 kt - 4E x 3x ] cos 3 kt - sin kt + 6E x 2x 2] coos2 kt - sin 2 kt

- 4E xxS] cos kt -sin 3 kt +E x 4] sin 4 kt (.B-S)

which gives

Elxcxs] u E XCX] W 0 (B-9)
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E[.4 ] =E Ex] = 3E[ x~xp] (B-10)

If we continue this procedure we see that

E[xE] = E[, v 1, 2.

and since all of the moments are equal, xc and x must have the same distribution, and

we can state the following condition: A necessary condition for a to be stationary is

that xc and xa are uncorrelated, equally distributed random variables with zero mean.

With the additional assumption that xc and xa are independent, Eq. B-10 becomes

E[ x] E[ X] 3(E[x ]) = 3- (B-11)

and by computing higher order moments, with the assumptions that the moments of al

orders exist, we obtain

S1• 3 . 5... (n-1) [E[ 2n even

Es [xS](B-12)

0 n odd

The characteristic function for x5 and x is, then,

00 [](jV) n =0G (r) 2m /V2 2\

Mx(JV) = I E[xn] 1= 2 m = exp (B-13)

n=O m=O 2rm!!

which is the Gaussian distribution.

Correlation Functions

Thus far, we have only considered first-order statistics and the conditions given

are only necessary to insure stationariness.

By expressing the correlation function of a(t) in terms of the correlation functions

for x s(t) and xc (t), we can obtain other necessary conditions.

Assume that xc (t) and xs(t) are (wide sense) stationary processes with zero mean,

so that we can write

"Rc(T) = E[x c(t+.r)x clt) ]

"Ra (-r) = EIxB(t+'r)x t)]a5 (1) = E[xs(t+ r)Xs(t)]

Rsc( T) = E[xa(t+*)xc(t)]

RC (T) = E[xc(t+r)xs(t)l.

The autocorrelation of a(t) is readily obtained.
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R a(t, -) = E[a(t+.r)a(t)] = R c(-r) coB k(t+T) -coB kt + R 8(-r) Bin k(t+-r) Bin kt

R RCB (-r) coB k(t+T) Binl kt - R sc(T) Bin k(t+Tr) coB kt. (-5

For R a to be a function of only r we must have

R C (T) = RB (-r

Substituting these expressions in (B-15) giveB

R a(r)=R c(-r) cos kT+ R csin k',. (B-17)

Under these assumptions the correlation of the function

b(t) = x C (t) Bin kt + x (t McoB kt (B - 18)

is the same as for a(t).

RbJr) =R c(-r) coB k-r+ R CB sin kr. (B -19)

The CrosCorrelation between a(t) and b(t) iB

Ra (r) =R s(T) cos kT- R c(T) sin kT

R ba(T) =RCS(7) cos kT + R (7r) sin ktr. (B-20)

We see that even if x a(t) and x c(t) are independent random processes (no that R C(t)

R sc(t) -M 0), a(t) and b(t) are not independent.

65



APPENDIX C

Regression- Line Prediction

Assume that we have a wide-sense stationary process y(t) = s(t) + n(t) sampled at

distances 6 apart. Call N6 = r, where N is a positive integer. Under the time interval

--r to 0 we want to fit a straight line to y(t) so that

*(a. b) [y(-v 6)-(a-bv 6) (C-I)
V=0

is minimum (see Fig. 23).

ki. -2 [y(- v6)-a+bv 6] -r 0

V=0

26 [y(-v6)-a+bv6] = 0

V:O

y(-v6) z(N+1)a-b6 6 V
V=O VfO

N N N

vy(-v6) = v - b6 1 2

VfO V=O V=O

Using the formulas

V (C -2)

0

V2 a N(N+(ZN+ I)  (C-3)

0

we obtain

a I N+I+2[) y(-v6) -ZN + I N 6) (C-4)
"0 V=O

6b 6 (N+IN+2) 6 (C-5)

=O V=0
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Mean-Square Error A(T)

The mean-square error with the regression line used as predictor is

A(T) = E[(s(T)-(a+bT)) 2]

= E[s2-(T)+a2 +b2 T2 -2as(T)-2Tbs(T)+2Tab]. (C-6)

To evaluate A(T), we substitute the expressions for a and b (C-4) and (C-5) in (C-6)
and take the mean of each term separately. To simplify the calculations, we assume

that s(t) and the noise n(t) are uncorrelated and that E[n(t)] =0. This means that we can

write the autocorrelation function of y(t) as

R y (r) = R 8(Tr) + R n(T).-

Moreover, we assume that the noise is uncorrelated between samples

R n(k6 ) k =1, 2, 3, (C-7)

0 k I

Evaluation of E[a 2 J

Let us consider the evaluation of the term E[a2 ] in A(T). From (C-4)

2]J 22LN+) i1 2 Ild~ ELy-8y(p) 6 -vN+1 L6

E+ N+2~ EL(.v)(.P)] N"C7-8)y
(NN+ I0p=

E~y(-+ 9)(s) = I R~,[(P-46] = + R)
v=OIA=OV= v LM p v

Since the noise is uncorrelated at different sample points, the last term becomes

z
R n (Y-)61= (N1) n .(C-9)

To evaluate the first term, we expand R a(t) in a power series around zero:

R 9(t) a R a()+ S(O) J + 0(I 1) (C-1O)
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Since we have restricted ourselves to differentiable sample functions, there is no first-

order term. R(O) is the second derivative at zero. The notation for the remainder

means that

lim 0 = constant.
t-0 t0

Using (C-10). we get

V=0 IL=0 V=0 L=0 V=0 IL=0

N N

+ I O(IV-I 3 63 (C-l1)
v=O R=O

The sum in the second term from (C-2) and (C-3) is

N N N(N+1l2(N+2)

I (V -li) 2  (V +I 2 v IL) 6 ±~I~~ (C-i12)
V=0 0 v IL

In the same way,

S1 O(v-11363)
= O(N5 3).

We obtain from these results

Ry[(v-p)8] = (N+1) 2 R s (O) + N(N+I)2 (N+2 "

v=O I=0

+ (N+1) w.2 + O(N 5 63 ). (C-13)n

To evaluate the second term of E[a2 ], we write

vR [(v-i&)6] = vR (0) + * 67 (V)z?
v=O IL=0 v IL V IL

+ I O(v Iv- I3 63). (C-14)

Using the formula

N (N+1) (C-15)

together with (C-2) and (C-3), we obtain
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~,V(V I) 2 MN 2(N+ 1) 2(N+2) (C - 16)
i=O IL=O

which gives

N N N N 1 2N2( +1 NY R R[(V-iA)6] R ((N0) 24 6 51

+ N(N+_ ) a-2 + O(N6N63) (C -17)

2 n

In a completely analogous way,

N 2 (+) R5 o- (N-I)N 2 (N+l) 2 (N+2) 62 R~

N(N+l)(2N+I) 2 + O(N7 63)" (C-i8)
+ ----- Tn+ON6(-8

By substituting (C-13), (C-17), and (C-18) in (C-8), we get

E[a 2 ] = R (0) -.L(N-I) N6 2 R"(0) + 2(IN+) n + O(N3631" (C-19)s 6 s IHNi2) n

Using the same technique, we obtain

2

E[b = 2O + 6 _ E+ O(N6) (C-20)
-R N(N+I)(N+2) 62

2
16 Tr

E[ab] =--FN6RO(0) + (N-EN+ f O(N6) ( -1

E[as(T)] = Rs(T) - -L (N-1) N6 2 Rs(T) + O(N 3 63 1 (C-22)

E[bs(T)] = -R,(T) -+N6Rs(T) + O(N2 62 ). (C-23)

Here, R' (T) and R"(T) are the first and second derivatives of Rs(t) at t = T.
Substituting these terms in (C-6) and assuming that N6 = T is small enough yields

A(T) = 2 [R(0) - Rs(T) --I! R(0) + TRI(T + (Rs(T) R(0)) +T.+-Ir2]

+ [33+ 3T +  (C-24)

(N+1)(N+2) 2 122N

Introducing some new notation, we can write

A(T) = r(T) + W(T) +" TI J +1-(N)n? [3i- + 3 T + (C-25)
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where

r(T) = 2; R(o) - R (T) -- R"(O) + TRI(T)]

*(T) = TZ (Rw(T)-R"(O))

(N+I)(N+2
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APPENDIX D

The Weighting Function W(U, V)

To study the properties of the weighting function W(U, V) in (114) we can equivalently

consider the argument of the logarithm.

We want to prove certain properties of the function

F(U, V) = 5' exp [2Ux+2Vy-x 2_y2}p(x, y) dx dy, (D-l)

where p(x, y) is a probability density function, and E and N o > 0. Since all of the terms

in the integral are greater than zero, we have

F(U, V) > 0 for all U, V.

The second derivative of F(U, V) with respect to V is

a 2F W_ E_ C 2 y 2  E r2  2 2 2 '

Sao" - A)o exp{- ° [2Ux+2Vy-x yJ p(x, y) dx dy (D-2)

and we have

a2F> 0
8v

2

for all U, V.

aU 2

By using the Schwartz inequality, it can also be shown that

2 2 8 2

8V2 - 8 >0.

This implies that F(U, V) cannot have any saddle points. If it has a minimum, it is a

true minimum, and the function is monotonically increasing in all directions from the

minimum.

It is possible to prove the following theorem.

THEOREM D: A necessary and sufficient condition for F(U, V) to have a minimum

at a finite point in the UV-plane is that p(x, y) is different from zero in more than half

of the xy-plane. That is, it is not possible to draw a straight line through the origin in

the xy-plane so that p(x, y) is identically zero on either side of the line.

PROOF D: First, we prove that the condition is necessary. If p(x, y) is zero in

half of the xy-plane, we can rotate the xy coordinate system so that

p(x ° ,y ' ) u 0 fory' <0
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x = x cos 0 - y sin lD

y'= xsin0 +ycos 81•

By making the same rotation in the UV-plane,

U, Z U cos 0 - V sin 8 (D -4)

V= Usine +Vcos0 0.

The integral (A-i) is not changing and, using the x'y' and U'V' coordinates, we have

8F ('Q° c0 2Ey' {Nr ]JO0  -- exp E_ [2U'x'+2V'yl-x 2-y'2 p(x',y') dy' dx t  (D-5)

Since all terms in the inner integral are equal to or greater than zero for all values of

x' we have

OF
ev- > 0  for all U',V'

and thus there is no finite point that is such that

8F 8F
V'= 0; aU- 0

which is a necessary condition for a minimum.

Second, we prove that the condition is sufficient by showing that it is possible to draw

a closed contour in the UV-plane so that the derivative in the direction of the radius

vector is greater than zero,

8FgF> 0,

foir all points on the contour. Since the second derivatives are positive in all directions,

there can be only one minimum inside the contour.

We compute (- )u for an arbitrary direction of the UV coordinate axis and choose

the xy axis correspondingly

8( )U0 ffi _o o 2Eyoo-o( :L 2 } (_E2

_. 0 -g-exp [2Vyy]exp x p(x, y) dx dy (V-6)

We split the integral into two halves and after a change fo variable obtain

(-)U ffi - exp(- x) 2Ey dyoox
=0 zorox  - exp{.L[2Vy-y2]}p+(x,y)dydx

0 exp( x2) 2Ey
- xp -W- exp {-o[2Vy+y]} p_(x,-y) dy dx

I+(V) - I (V). (D-7)
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Here, p+ and p_ denote the probability density in the upper and lower half-planes,

respectively.

Next, we split I+ and I into two halves, integrating, first, over a strip of width 26

around the x-axis. Let

A=Y exp{-o x2} 0 - exp -1[2Vy-y2]}p+ (x ' y)dydx (D-8)

B = exp{- - x $ 6 exp {E- [2Vy+y2]} p_(x, -y) dy dx 6 > 0. (D-9)

Clearly, both A and B are greater than or equal to zero.

Since all terms in I+ and I are positive, we can write

(ZE {0 EE
I+(V) >A+exp V ) v exp-o [x2+y2 p+(x, y) dydx (D-10)

(~~~~v0) SEy E7 ~w x [x2-+y2]
Iex p B + exp p_(x,-y) dydx. (D-Il)

006 f 0

According to our assumptions p+ or p_ are not identically zero and, as long as the whole

probability mass is not located as impulses along the x-axis, we have

IOFIu I+(V) - I(V)>A+Cexp 1 V6) - B - D exp(- EV6)

(A,B,C,D and 6 >0) (D-IZ)

The fact that p(x, y) is a probability density ensures that all integrals involved in the

proof converge.

Thus it is possible to find a V = RV > 0 with the property that

(a V) > 0. (D-13)
/U0,V=RV

Since we have proved this for an arbitrary orientation of the coordinate system, we

can find such an R V in all directions, and that completes the proof.
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